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Summary

Analysis of the methyl esters of a commercial naphthenic acids mixture using
comprehensive multidimensional gas chromatography-mass spectrometry (‘2D-GCMS’)
revealed the presence (as esters) of about 2000 compounds. These included over 20
tentatively identified (from the mass spectra and those of reference compounds), as n-
acids, methyl and polymethyl (including isoprenoid) acids and cyclohexyl,
perhydroindan, decalin and adamantane acids, similar to those reported previously in a
commercial mixture.

A variety of monoaromatic acids and non-acids (e.g. polycyclic aromatic hydrocarbons)
were also present, of which 10 were tentatively identified in the same manner to those
above.

Use of an ionic liquid primary GC stationary phase provided an unprecedented
resolution of the individual components of the mixture and the mass spectra were of
excellent quality and fully library searchable (where such library spectra existed). Many
other compounds could probably be identified if the spectra were interpreted and
library-matched.

No quantitative analyses were conducted, but overall the major components of the
mixture appeared to be n-acids, judging from the similarities in mass spectra of the
unknowns and library spectra of n-acids (methyl esters). Many other individual acids
were nearly as abundant as the n-acids, however.



1. Introduction

The American Petroleum Institute (API) require qualitative analysis of a commercial
naphthenic acids mixture using comprehensive multidimensional gas chromatography-
mass spectrometry (‘2D-GCMS’) to allow reliable identification of selected individual
chemicals in the mixture (cf Rowland et al., 2011a).

Previous studies of the toxicological effects of the mixture have been made by the API
and studies of the mixture composition have been made for the API by the University of
Alberta, Edmonton, Canada following GCMS analysis of silylated derivatives (Swigert,
personal communications). The latter method did not allow individual acids to be
identified but did provide a semi-quantitative measure of the acid groups, based on the
response of certain ions in the electron ionisation mass spectra of the derivatives.
Effectively these assignments allowed a table to be constructed of the relative
abundances of certain acid groups defined by carbon number (n) and undersaturation
with hydrogen (assumed to be due to hydrogen loss due to ring formation) expressed
as the term z in the formula CnH2n+,O2> where z is zero (acyclic) or an even, negative,
integer (e.g. -2,-4,-6 for monocyclic, bicyclic, tricyclic acids).

Contractually it was agreed that UoPEL would conduct a qualitative analysis of the
acids mixture supplied by API and derivatised to form the methyl esters by 2D-GCMS
and up to twenty mass spectra and/or selected ion chromatograms obtained. Where
possible, spectra of reference compounds would also be provided.

Subsequently, following a multiway telephone discussion (11" June 2012), it was
agreed that additional spectra of the five major components of the mixture, as revealed
by 2D-GCMS of the methyl esters, would also be supplied and that information
concerning the presence of some non-acids would also be obtained and reported to
API.

2. Materials & Methods
2.1 Samples

A commercial preparation of naphthenic acids (Merichem, CAS No. 1338-24-5, ID No.
CP006002) was supplied by API.

2.2 Methods

The commercial preparation of naphthenic acids was refluxed with boron trifluoride
(12%) in methanol (Acros Organics, Geel, Belgium) and the products extracted into
hexane. The extract was analysed by comprehensive two-dimensional gas
chromatography/time-of-flight mass spectrometry (GCxGC/ToF-MS). Analyses were
conducted using an Agilent 7890A gas chromatograph (Agilent Technologies,
Wilmington, DE, USA) fitted with a Zoex ZX2 GCxGC cryogenic modulator (Houston,
TX, USA) interfaced with a Almsco BenchToF dx™ time-of-flight mass spectrometer
(Almsco International, Lantrisant, UK) operated in positive ion electron ionisation mode
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and calibrated with perfluorotributylamine. The scan speed was 50 Hz. The first-
dimension column was an ionic liquid SLB-IL111 (Supelco, Bellefonte, PA, USA) 30 m
x 0.25 mm x 0.20 pum and the second-dimension column was a 50% phenyl
polysilphenylene siloxane BPX-50 (SGE, Milton Keynes, UK) 3.0 m x 0.25 mm x 0.15
pum. Helium was used as the carrier gas at a constant flow rate of 0.8 mL min™.
Samples (1 yL) were injected at 280 °C splitless. The primary oven was programmed
from 40 °C (hold for 1 min), then heated to 270 °C at 2 °C min™* (held at 270 °C for 10
min). The temperature of the oven housing the secondary column was programmed to
offset the primary oven by +40 °C. The modulation period was 8 s. The transfer line
temperature was 290 °C and the ion source temperature was 280 °C. Data processing
was conducted using GC Image™ v2.1 (Zoex, Houston, TX, USA).

3. Results & Discussion

Until recently, despite decades of attempts, very few individual acids had been
identified in petroleum or in commercial petroleum-derived, so-called, ‘naphthenic
acids’ mixtures. Early studies made as part of the famous API research project 6 were
summarised in a textbook (Lochte & Littmann, 1955) and led to identification of mainly
monocyclic acids. Later it became common practice to assume that such acids were
representative-even though this was shown to be erroneous and the term ‘naphthenic
acids’ considered inappropriate by Knoterus as early as 1957 (Knoterus, 1957).

Indeed, the assumption that naphthenic acids were only alicyclic acids continued to be
commonplace until the highly chromatographically resolving technique known as
comprehensive multidimensional gas chromatography-mass spectrometry, GCxGC-
MS, 2D-GCMS and by a variety of other synonyms (Adachour et al., 2008) was used to
study a commercial mixtures of acids treated by heating with boron trifluoride-methanol
complex to convert acids to the methyl esters (Rowland et al., 2011a).

The results of the latter examination showed that a number of the acids in the mixture
could be identified by comparison of the electron ionisation mass spectra and GCxGC
retention times with those of reference acids. In the mixture examined in the studies by
Rowland et al., (2011a,b), so-called straight chain acids dominated, but methyl and
polymethyl branched acids, and monocyclic to tricyclic acids were also present
(Rowland et al., 2011a, b). Also identified in the mixture examined in the studies by
Rowland et al., (2011a,b) were a number of monoaromatic acids (Rowland et al.,
2011b). Non-acids present in the mixture examined in the studies by Rowland et al.,
(2011a,b) included some polycyclic aromatic hydrocarbons and phenols.

Despite the above reports (Rowland et al., 2011a, b; West et al., 2011) very few, if any,
subsequent attempts to use 2D-GCMS to characterise commercial naphthenic acids
mixtures appear to have been made, even though the method was also shown to be
applicable to supercomplex mixtures of acids from other sources, including oil sands
processing (e.g. Rowland et al., 2011c, d, e).

Indeed, recent results from the same laboratory (West et al., 2012) have shown that the
unprecedented chromatographic resolution reported by Rowland et al., (2011a) can be
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improved upon still further by use of GCxGC columns with alternative stationary
phases, notably with certain ionic liquids and effectively some mixtures can be more or
less completely resolved (West et al., 2012).

In the present study, the latter conditions (viz: an ionic liquid GC primary stationary
phase; West et al 2012 as described in 2.2 Methods above) were used to examine a
mixture of acids supplied by the API and derivatised by heating with boron trifluoride-
methanol complex to convert acids to the methyl esters.

The total ion current chromatogram is shown in Figure 1A and B (3 dimensional and 2
dimensional representations respectively). The five most abundant peaks are denoted
peaks 1-5. The retention region of some minor monoaromatic acids (methyl esters) is
also shown encircled (Figure 1).

Selected ion mass chromatograms of molecular ions of the five major compounds were
used to illustrate the excellent chromatographic resolution of the individual compounds
(Figure 2A and B). Figure 2A shows the whole extracted ion current mass
chromatogram for m/z 242, typical of Ci4 z=0 acids (methyl esters). The major peak
(peak 5) was tentatively assigned as due to the methyl ester of n-tetradecanoic acid
from the mass spectrum and comparison with spectra from the National Institute of
Standards & Technology (NIST) mass spectral library.Figure 2B shows partial extracted
ion current mass chromatograms for m/z 186, 200, 214, 228 and 242, indicative of Cjo.
14 z=0 acids (methyl esters). These illustrate the power of the 2D-GCMS method to
resolve individual components of the mixture. The major peaks (peaks 1- 5) were
tentatively assigned as due to the methyl esters of n-decanoic to n-tetradecanoic acids
from interpretation of the mass spectra and comparison with spectra from the National
Institute of Standards & Technology (NIST) mass spectral library.

Mass spectra of these five most abundant components of the total ion current
chromatogram and the corresponding best match library spectra, are shown in Figure
3. The unknowns all appeared to be n-acids, judging from the similarities in mass
spectra of the unknowns and library spectra of n-acids (methyl esters). No retention
time comparisons were made with authentic compounds.

Mass spectra of a further nineteen unknowns (originally 20, but the acid denoted peak
2 (Figures 1-3) was also one of the initial 20 spectra supplied to API, so that spectrum
was not duplicated), selected to include members of the z=0, -2, -4, -6 and -8 classes of
acids, are shown in Figure 4A-S and of the corresponding best match library spectra in
Figures 4ARef-SRef.

Also present in the sample were a number of non-acids, identified by comparison of the
mass spectra with those of library spectra (Figure 5A-F) and of the corresponding best
match library spectra in Figures 5ARef-5FRef. These were polycyclic aromatic
hydrocarbons and polycyclic sulphur-containing aromatic hydrocarbons.



4. Conclusions

Analysis of the methyl esters of a commercial naphthenic acids mixture using
comprehensive multidimensional gas chromatography-mass spectrometry (2D-GCMS)
revealed the presence (as esters) of about 2000 components including: n-acids, methyl
and polymethyl (including isoprenoid) acids and cyclohexyl, perhydroindan, decalin and
adamantane acids, similar to those reported previously in a commercial mixture
(Rowland et al., 2011a) and tentatively identified herein by comparison of the spectra
with those of reference compounds. No retention time comparisons with reference
compounds were made.

A variety of monoaromatic acids and non-acids (e.g. aromatic hydrocarbons) were also
present.

Use of an ionic liquid primary GC stationary phase provided an unprecedented
resolution of the individual components of the mixture and the mass spectra were of
excellent quality and fully library searchable (where such library spectra existed).

No quantitative analyses were conducted, but the major components of the mixture
appeared to be n-acids, as observed previously for a mixture of commercial acids
(Rowland et al., 2011). Many other individual acids were nearly as abundant as the n-
acids, however.
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Table Legend

(note numerous synonyms are possible)

Table 1. Compound Names (all as methyl esters)

Peak Compound Name Z number
Figure 3 -Peak 1 n-Decanoic acid 0
Figure 3 -Peak 2 n-Undecanoic acid 0
Figure 3 -Peak 3 n-Dodecanoic acid 0
Figure 3 -Peak 4 n-Tridecanoic acid 0
Figure 3 -Peak 5 n-Tetradecanoic acid 0
Figure 4 - Peak A 13-methyltetradecanoic acid 0
Figure 4 - Peak B 2,6-dimethylheptanoic acid 0
Figure 4 - Peak C 2,6-dimethylundecanoic acid 0
Figure 4 - Peak D 2,6,10-trimethylundecanoic acid 0
Figure 4 - Peak E 3,7,11-trimethyldodecanoic acid 0
Figure 4 - Peak F 3-methylcyclohexane carboxylic acid -2
Figure 4 - Peak G Cyclohexyl-3-propanoic acid -2
Figure 4 - Peak H Adamantane-2-carboxylic acid -6
Figure 4 - Peak | Adamantane-1-ethanoic acid -6
Figure 4 - Peak J 3,5-dimethyladamantane-1-carboxylic acid -6
Figure 4 - Peak K Perhydroindane carboxylic acid -4
Figure 4 - Peak L Perhydroindane ethanoic acid -4
Figure 4 - Peak M Decalin-2-carboxylic acid -4
Figure 4 - Peak N Decalin-1-ethanoic acid -4
Figure 4 - Peak O Decalin-1-ethanoic acid (isomer) -4
Figure 4 - Peak P Dimethylbenzoic acid -8
Figure 4 - Peak Q Ethylbenzoic acid -8
Figure 4 - Peak R Phenylpropanoic acid -8
Figure 4 - Peak S Trimethylbenzoic acid -8




Figure Legends

Figure 1. A. Total ion current chromatogram (3 dimensional) and B. 2 dimensional
representation resulting from 2D-GCMS of methyl esters of API supplied naphthenic
acids. Peaks 1-5 are the 5 major components by peak height.

Figure 2. Extracted ion mass chromatograms resulting from 2D-GCMS of methyl esters
of API supplied naphthenic acids. A. Whole chromatogram for m/z 242 illustrating
distribution of Ciy4.¢ acids (methyl esters). B. Partial chromatograms for m/z 186, 200,
214, 228 and 242 illustrating the distribution of Cy.0.14:0 acids (methyl esters).

Figure 3. Mass spectra resulting from 2D-GCMS of methyl esters of API supplied
naphthenic acids, peaks 1-5 and related NIST library spectra (methyl esters).

Figure 4. Mass spectra resulting from 2D-GCMS of methyl esters of API supplied
naphthenic acids, 19 selected unknowns representing acyclic, mono, bi , tricyclic and
monoaromatic acids and related spectra (methyl esters) of reference compounds.

Figure 5. Mass spectra resulting from 2D-GCMS of methyl esters of API supplied
naphthenic acids, non-acids and related NIST library spectra.
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